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Abstract. In this work, superconductors that contain paramagnetic ions which only interact
with the superelectrons via electromagnetic fields are considered. We postulate that when these
materials are superconducting, a consequence of the phase coherence of the superelectrons is
that if the external field is changed, after equilibrium is reached, there is no net heat produced or
absorbed by the paramagnetic ions. We find that in high magnetic fields, when the susceptibility
(χ) of the paramagnetic ions is such that 06 χ � 1, the superconductor behaves like a standard
type II material and forχ � 1, the material behaves ferromagnetically such that there is a square
flux line lattice. The magnetic phases present for different values ofχ and magnetic field are
described, and experimental evidence for them is provided.

1. Introduction

The coexistence of magnetism and superconductivity in the rare-earth Chevrel phases
(RE)Mo6S8 and (RE)Mo6Se8, the ternary rhodium borides (RE)Rh4B4 and more recently the
high-temperature superconductors where the crystal structure separates the superconducting
electrons from the rare-earth 4f electrons which cause the magnetism has been the subject
of intense study [1, 2]. These materials have provided many complex phase diagrams
showing re-entrant superconductivity, field-induced superconductivity, the coexistence of
superconductivity and magnetism at the atomic level and more recently, using neutron
scattering, the existence of a square flux line lattice in high fields [3].

In this work, a subset of magnetic superconductors, described here as paramagnetic
superconductors, is considered. In the normal state these materials are paramagnetic,
but when they are superconducting, the electrons responsible for the paramagnetism
are completely separated from the superelectrons so they only interact via magnetic
fields. Therefore there is no pair-breaking mechanism which causes competition between
superconductivity and magnetism [4].

We postulate that in the superconducting state, a consequence of the phase coherence
of the superelectrons is that if the external field is changed, there is no net heat produced or
absorbed by the paramagnetic ions. This is in contrast to the situation for the normal state;
if the external field is increased, the temperature of the material increases. If the external
field is decreased, the material cools (for example during adiabatic demagnetization). It is
shown that much of the complexity of the magnetic phase diagrams of many magnetic
superconductors can be explained in a self-consistent description without the need to
introduce parameters unrelated to the superconductivity.
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In the next six sections, expressions for the magnetic properties are derived. Section 2
considers the Ginzburg–Landau equations for non-magnetic superconductors and how to
extend them for paramagnetic superconductors. Section 3 considers how the paramagnetic
ions reach thermal equilibrium after the external magnetic field has been changed. Sections
4, 5 and 6 provide calculations of the high-field and low-field properties of paramagnetic
superconductors. In section 7, the structure of the flux line lattice is considered—in
particular, whether the structure is triangular or square. The final three sections provide
a comparison between the calculations and results found in the literature.

2. The Ginzburg–Landau equations

2.1. Non-magnetic superconductors

One of the most productive frameworks for describing the properties of superconductors in
magnetic fields is through the Ginzburg–Landau [5, 6] formulism. Although only strictly
applicable close to the critical temperature, it is useful for type II superconductors throughout
their superconducting phase.

The Landau free energy is a minimum for the equilibrium stable superconducting phase
and is given by

Fs(H, T ) = Fn(0, T )+ α|ψ |2+ 1

2
β|ψ |4+ 1

2m
|(−i h̄∇− 2eA)ψ |2+ B2

2µ0
(1)

whereFs(H, T ) is the free energy per unit volume in the superconducting phase at an applied
field H and temperatureT , Fn(0, T ) is the free energy per unit volume in the normal phase
in zero field as a function of temperature,ψ is the wavefunction for the superconductor,
α and β are constants,µ0H is the applied field,B is the total local magnetic field and
A is the total local magnetic vector potential. The expression is phenomenological and
can be justified as follows: the second and third terms, involvingα andβ, account for the
reduction in energy when the normal electrons condense and become superelectrons; the
fourth term accounts for the kinetic energy of the superelectrons in a magnetic field; and
the last term known as the magnetic field energy accounts for the energy stored in the local
magnetic fields.

2.2. The magnetic field energy for magnetic superconductors

The magnetic field energy term in a non-magnetic superconductor

B2

2µ0

can be justified [6] by considering the energy per unit volume required to produce a field
in a coil. We suggest that the magnetic field energy term be changed for paramagnetic
superconductors as follows: the energy per unit volume (U1) required to energize a coil in
a paramagnetic medium is given by

U1 = B2

2µ0(1+ χ)
whereB is the total field inside the coil andχ is the susceptibility of the paramagnetic
medium.
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In normal paramagnetic materials, as the field is increased, there is a redistribution of
the magnetic moments parallel and antiparallel to the applied field as the ions thermally
equilibrate. This generates heat (Uheat), which is of magnitude

Uheat=
∫
B dM → Uheat= χB2

2µ0(1+ χ) .

Equally, if the applied-field strength is reduced fromHC2(χ, T ) to H , the heat (Ucool)
that is in principle absorbed by the paramagnetic ions is

Ucool = − χB2

2µ0(1+ χ) +
1

2
µ0χ(1+ χ)H 2

C2(χ, T ).

At this point, we assume that if the applied magnetic field strength is changed, the ions
in a paramagnetic superconductor reach thermal equilibrium without absorbing or generating
any net heat. Hence the energy that would be transferred to or from the thermal bath is
provided by the superelectrons. With this assumption, the magnetic field energy (UF ) is
given by

UF = B2

2µ0

1− χ
1+ χ +

1

2
µ0χ(1+ χ)H 2

C2(χ, T )

where HC2(χ, T ) is the applied upper critical field strength necessary to destroy the
superconductivity. The equation ensures that the correction which accounts for no net
heat transfer to or from the paramagnetic ions to the thermal bath equals zero when the
applied field strengthH is equal toHC2(χ, T ). At field strengths (H ) belowHC2(χ, T ),
were the material in the normal state, the paramagnetic ions would absorb heat from the
thermal bath to reach equilibrium. However, in the superconducting state, this additional
energy is provided by the superelectrons. HenceUF is greater thanU1.

With this expression forUF , the free energy for a paramagnetic superconductor which
accounts for paramagnetic ions is given by

Fs(H, T ) = Fn(0, T )+ α|ψ |2+ 1

2
β|ψ |4+ 1

2m
|(−i h̄∇− 2eA)ψ |2

+ B2

2µ0

1− χ
1+ χ + µ0χ(1+ χ)H

2
C2(χ, T )

2
. (2)

With this function, the free energy of the superconducting state and the normal state are
equal atHC2(χ, T ), and are obtained from the standard thermodynamic relation

Fn(H, T ) = Fn(0, T )+ (1+ χ)µ0H
2

2
. (3)

In considering paramagnetic superconductors, the paramagnetic ions are characterized
as a medium of susceptibilityχ . The distinction between the field produced by the ions
(µ0Mions), the applied field (µ0H ) and the field produced by the supercurrents (µ0Msc) is
now made explicit. In particular, the field produced by the ions is proportional to the local
magnetic field produced by the non-paramagnetic-ion sources, so

µ0Mions= χ(µ0H + µ0Msc).

This leads to

B = µ0H + µ0Msc + µ0Mions= µ0(1+ χ)(H +Msc). (4)
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Using equation (4) to eliminateMions from equation (2), and minimizing the free energy
with respect toA andψ , keepingH constant, leads to the two Ginzburg–Landau relations,
which now include the effect of the paramagnetic ions:

α|ψ | + β|ψ |2ψ + 1

2m
(−i h̄∇− 2eA)2ψ = 0 (5)

(1+ χ)(1− χ)∇×Msc = − ieh̄

m
(ψ∗∇ψ − ψ∇ψ∗)− 4e2

m
ψ∗ψA. (6)

Equations (5) and (6) will be denoted the first and second Ginzburg–Landau equations.

3. Thermal equilibrium in superconductors

In this section we consider how paramagnetic superconductors and normal paramagnetic
materials reach thermal equilibrium in a fundamentally different way. Support is provided
for the central assumption of this work which is that if the magnetic field applied to a
paramagnetic superconductor is changed, after the system has reached thermal equilibrium,
there is no net heat generated or absorbed by the paramagnetic ions.

In a normal paramagnetic material, if an applied field is increased, first the splitting
between the allowed quantum mechanical states of different magnetic moment increases
while the populations of these states remains unchanged. Then, thermal equilibrium is
achieved as the populations of these states are rearranged. Moments fall from higher-energy
states to lower states, photons are emitted and the material heats up.

Justification for the assumption of no net heat produced or absorbed by the paramagnetic
ions (in the superconductor) can be provided by considering the nucleation of a fluxon
following an increase in the external field. If the heat that is dissipated in a normal material
can be retrieved, then less energy is required to produce the fluxon. If a fluxon is nucleated,
a consequence of the phase coherence of the superelectrons is that supercurrents flow to
produce flux quantized atφ0. The difference in energy between the allowed states increases
for those paramagnetic ions within the fluxon because of the increase in local field. After
nucleation, the population numbers of these states will then change as the ions reach thermal
equilibrium in the new local field. However, if the magnetic moment of an ion changes (by
1m) by decaying from a higher-energy state to a lower state, additional supercurrent flows
to ensure that the total flux remains constant (i.e.φ0). A screening current is produced with
a magnetic moment of equal magnitude and opposite sign (i.e.−1m). As the paramagnetic
ions reach thermal equilibrium, transitions occur for both the paramagnetic ions and the
supercurrent which together constitute the fluxon, between quantum mechanical states of
the same energy and total flux. The energy that in a normal material would be emitted as
photons and dissipated as heat, iscoherentlytransferred to the superelectrons to produce
the screening currents. We suggest that a general consequence of the phase coherence of
the superelectrons is that whenever transitions occur for the paramagnetic ions, screening
currents are induced to compensate for the change in the local magnetic field. We conclude
that in paramagnetic superconductors, the paramagnetic ions are all in thermal equilibrium
with the local field and the thermal bath, but there is no net heat transferred to or from the
paramagnetic ions if the external field is changed.

A complete microscopic description of how thermal equilibrium is reached must
include a quantum mechanical description of both the magnetic ions and the superelectrons
(including surface currents, and the nucleation and motion of fluxons from the surface
into the bulk of the material), and include the role of the thermal bath and thermal
fluctuations. We have provided support for the assumption of no net heat production,
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although a microscopic description is beyond the scope of this work. The remainder of this
work considers the implications of this result.

4. High-field calculations

4.1. The upper critical field

Abrikosov [5] was the first to derive an expression for the upper critical field from the
Ginzburg–Landau equations. Linearizing the first Ginzburg–Landau equation gives

α|ψL| + 1

2m
(−i h̄∇− 2eA)2ψL = 0 (7)

where the magnetic vector potential is taken as

A = (1+ χ)Hxj.
The solution for the wavefunctionψL provided by Abrikosov is still valid, where

ψL(x, y) =
∞∑

n=−∞
Cn exp(inky) exp

[
− (x − xn)

2

2ξ2(T )

]
(8)

whereCn are constants, the spacing between the fluxons isxn+1−xn, the upper critical field
is µ0HC2(χ, T ), andξ is the coherence length. By substituting the linearized wavefunction
ψL into equation (7),ξ andHC2 are found to be of the form

ξ2(T ) = h̄2

2m|α|
µ0HC2(χ, T ) = φ0

2πξ2(T )(1+ χ) =
µ0HC2(χ = 0, T )

(1+ χ) .

(9)

Equation (9) suggests that the coherence length is unchanged by the presence of the
paramagnetic ions. However, the superelectrons experience both the applied field and an
additional field produced by the paramagnetic ions. Therefore, the applied field that destroys
the superconductivity, the upper critical field (µ0HC2(χ, T )), decreases asχ increases.

4.2. The field dependence ofM close toHC2

To determine the field dependence of the total magnetization (M ), the two Ginzburg–Landau
equations must be solved for|ψ | andMSC . Just belowHC2, the wavefunction and the
magnetic vector potential can be written [7] as

ψ = ψL + ψ1

and

A = AC2+A1

whereA1 andψ1 are small,ψL is defined by equation (8) and the orthonormality relation
is [7] ∫

(ψ∗Lψ1) d3r = 0.

By definition,

∇×AC2 = µ0(1+ χ)HC2.



2244 D P Hampshire

The expressions for the wavefunction and the magnetic vector potential are substituted
into the first Ginzburg–Landau equation and simplified using the orthonormality relation
betweenψ1 andψL, and the definition ofAC2. Then using the second Ginzburg–Landau
relation and ignoring surface integrals, and retaining only first-order terms, one finds the
result [7] ∫

(−A1 · ∇×Msc + β|ψL|4) d3r = 0.

SinceMsc is orthogonal toA1, this equation can be rearranged using a vector identity
and ignoring surface integrals to give [7]∫

(−Msc · ∇×A1+ β|ψL|4) d3r = 0. (10)

Abrikosov found that for a wavefunction of the form of equation (8)

eh̄

m

(
d

dx
|ψL|2− d

dy
|ψL|2

)
= − ieh̄

m
(ψ∗L∇ψL − ψL∇ψ∗L)−

4e2

m
ψ∗LψLA.

Comparison between this equation and the second Ginzburg–Landau equation gives

Msc = −1

(1− χ)(1+ χ)
eh̄〈|ψL|2〉

m
(11)

where the notation used is∫
(|ψL|2) d3r = 〈|ψL|2〉.

The Ginzburg–Landau parameter for a non-magnetic (i.e.χ = 0) superconductorκ(0)
and the Abrikosov parameterβA are defined by

κ(0) = m2β

2µ0e2h̄2

βA = 〈|ψL|
4〉

〈|ψL|2〉2 .
(12)

Substituting the expression forMsc into equation (10) gives the result∫ (
µ0eh̄|ψL|2
(1− χ)m

(
H −HC2(χ, T )− 1

(1+ χ)(1− χ)
eh̄|ψL|2
m

)
+ 2µ0κ

2(0)eh̄|ψL|4
m

)
d3r = 0

or equivalently

〈|ψL|2〉 = −µ0m

eh̄

(1+ χ)(H −HC2(χ, T ))

(2κ2(0)− 1/(1− χ))βA .

Substituting this expression into equation (11) gives an expression for the field
dependence of the magnetization produced by the superelectrons, of the form

Msc = − HC2(χ, T )−H
(2κ2(0)(1− χ)− 1)βA

. (13)

It follows from this equation that ifχ � 1,Msc is negative as found in standard metallic
superconductors. Ifχ � 1,Msc produces a positive contribution to the magnetization
belowµ0HC2(T ). In this paper, the term ferromagnetic (or diamagnetic) superconductivity
is used when the effect of the superconductivity is to increase (decrease) the magnetization
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above (below) that which would be expected from the paramagnetic ions alone. The term
does not necessarily imply that the total magnetization is positive (negative). The change
from diamagnetism to ferromagnetism is justified as follows: forχ � 1, the response
of the paramagnetic superconductor is similar to that of a metallic superconductor. The
supercurrent that circulates each fluxon rotates in the same sense as the current that produces
the applied magnetic field. WhenH = HC2(χ, T ), the (screening) supercurrents that
flow within the penetration depth of the surface flow in the opposite direction to (and are
cancelled by) the net current produced at the surface from the fluxons. As the applied-field
strength is reduced, the number of fluxons decreases, and hence the net field produced by
the supercurrents opposes the applied field which gives diamagnetism. Whenχ � 1, if
a fluxon nucleates, the paramagnetic ions equilibrate by producing a field that is larger
than the field produced by the supercurrents that were originally produced at nucleation.
Phase coherence (quantization of flux) demands that the supercurrent that rotates around
the fluxon produces a negative field—the local net supercurrent rotates in an opposite sense
to the current that produces the applied field. Hence as fluxons leave the material, the net
supercurrent adds to the applied field which gives ferromagnetism.

Equations (13) and (4) give an expression for the total magnetizationM of the form

M = B

µ0
−H = χH − (1+ χ)(HC2(χ, T )−H)

(2κ2(0)(1− χ)− 1)βA
. (14)

5. The Landau free energy in high magnetic fields

If the expression for the free energy is simplified using the first Ginzburg–Landau equation
and surface integrals are ignored, this gives

Fs(H, T ) = Fn(0, T )− β
2
|ψ |4+ B2

2µ0

1− χ
1+ χ + µ0(1+ χ)H

2
C2(χ, T )

2
. (15)

In high fields,H ≈ HC2(T ), one can take leading terms, and from equations (3) and
(13), find

Fs(H, T ) ≈ Fn(H, T )+ µ0(1− χ2)H(HC2(χ, T )−H)
(2κ2(0)(1− χ)− 1)βA

. (16)

Forχ < 1−1/2κ2(0) andχ > 1+1/2κ2(0), the free energy in both the diamagnetic and
ferromagnetic superconducting state is lower than that in the normal state as required. When
1− 1/2κ2(0) < χ < 1+ 1/2κ2(0), this is equivalent to the condition that the Ginzburg–
Landau parameter (κ(χ)) is less than 1/

√
2 (i.e. the condition for type I superconductivity in

metallic superconductors). The properties of this low-κ(χ) state are discussed in section 7.

6. Low-field calculations

6.1. Flux quantization

The quantization of flux is now considered [8]. The total flux threading a fluxon in the
paramagnetic superconductor is produced by two contributions, the circulating supercurrents
and the aligned paramagnetic ions. A vortex wavefunction (ψV ) is used [5, 8], which is a
general solution to the Ginzburg–Landau equations of the form

ψV = ψ∞f (r)eiφ
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where |ψ∞|2 = −α/β, f (r) is a function of the radius andφ is the phase of the
wavefunction. One of Maxwell’s equations is also used:

∇×Msc = Jsc. (17)

Substituting these two equations into the second Ginzburg–Landau equation gives

(1+ χ)(1− χ)Jsc = 2
eh̄Nsc

m
f 2∇φ − 4e2Nsc

m
f 2A.

Rewriting this equation in terms of a line integral around a closed path gives∫
(∇φ) ds =

∫ (
m(1+ χ)(1− χ)

2eh̄Nscf 2
Jsc

)
ds − 2e

h̄

∫
A ds.

The phase is quantized in units of 2nπ . If the path integral is taken so thatJsc is zero
along the path, then∫

B · dS = nh

2e
= nφ0

and assuming that the paramagnetic ions are in thermal equilibrium, the classic result for
non-magnetic superconductors is unchanged, namely that the flux is quantized in units of
φ0.

6.2. Magnetic properties in low field,χ < 1− 1/2κ2

The magnetization in low fields can be calculated from the second Ginzburg–Landau
equation. In the Meissner state, there is no flux penetrating the bulk of the superconductor,
ψ is constant,∇ψ is zero, and

(1+ χ)(1− χ)∇×Msc = −4e2

m
ψ∗ψA.

Taking the curl of both sides and using Maxwell’s equation (equation (17)):

µ0λ
2(1+ χ)(1− χ)∇× Jsc = −B (18)

where the penetration depth has been introduced, which is defined as

λ2 = m

µ0 4e2ψ∗ψ
. (19)

Taking the curl of equation (3) (and using∇×H = 0) gives

∇×B = µ0(1+ χ)∇×Msc.

Rewriting the resultant equation using Maxwell’s equation and substituting into equation
(18), the result is

λ2(1− χ)∇×∇×B +B = 0.

Using standard vector manipulation, and Maxwell’s equation∇ ·B = 0, one finds

−λ2(1− χ)∇2B +B = 0. (20)

For χ < 1, equation (20) implies an exponentially decaying solution. This leads to the
Meissner state in low fields where the flux is expelled from the bulk of the superconductor.

In the high-κ(0) limit, the properties of a fluxon can be described by introducing a delta
function of quantized flux [8]. Hence equation (20) is rewritten as

−λ2(1− χ)∇2B +B = δ(r)φ0k.
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The solutions of this equation which give the field in the vicinity of a fluxon can be
written in the form [8]

B → φ0

2πλ2(1− χ)
(
πλ(1− χ)1/2

2r

)1/2

e−r/(λ(1−χ)
1/2) whenr →∞

B ≈ φ0

2πλ2(1− χ)
(

ln
λ(1− χ)1/2

r
+ 0.12

)
whereξ � r � λ.

(21)

The lower critical field (µ0HC1(χ, T )), can be written in terms ofε1, the energy per
unit length of a fluxon, as [8]

HC1(χ, T ) = ε1

φ0
.

In the high-κ(0) limit, ε1 can be calculated by ignoring the core. Using the expression
for the free energy (equation (2)), this gives

ε1 =
∫

d2r

(
1− χ
1+ χ

B2

2µ0
+ 1

2m
|(−i h̄∇− 2eA)ψ |2

)
.

Simplifying this equation using the general vortex wavefunctionψV , and the second
Ginzburg–Landau equation, gives [8]

ε1 = 1− χ
1+ χ

[
B

dB

dr
2πr

]
ξ

where the negative value of the bracketed term evaluated atr = ξ is required. Hence using
equation (21), the lower critical field is given by

µ0HC1(χ, T ) = 1

(1− χ)(1+ χ)
φ0

4πλ2
(ln(κ(0)(1− χ)1/2)+ 0.12) (22)

which shows that forχ < 1− 1/κ2, below µ0HC1(χ, T ) one can find a Meissner state
region.

6.3. Magnetic properties in low field,χ > 1+ 1/2κ2

A complete description of the low-field properties requires solutions to the non-linear
Ginzburg–Landau equations. We assume that in the low-field, high-κ(0) limit, one can
ignore the cores of fluxons, and the second Ginzburg–Landau equation again leads to
equation (20). Forχ > 1, equation (20) leads to oscillatory solutions. If it is assumed
that the flux is quantized in units ofφ0, one of the solutions for equation (20) is of the form

B(x, y) = φ0

8λ2(χ − 1)
sin

(
x√

2λ(χ − 1)1/2

)
sin

(
y√

2λ(χ − 1)1/2

)
.

More general solutions are required to consider in detail the structure of the flux line
lattice. However, this expression is used here to determine the bulk magnetic properties
which are not structure sensitive. This solution forB(x, y) suggests that in the low-field
region one may find an antiferromagnetic flux structure. We find an approximate expression
for the field by which the lattice will have transformed from the low-field antiferromagnetic
structure to the high-field ferromagnetic superconducting structure. It is assumed that this
low-field approximation breaks down when the internal field that would be produced by
the applied field (µ0HM1(χ, T )(1+ χ)) is comparable to the field in the antiferromagnetic
structure. This leads to

µ0HM1(χ, T ) ≈ φ0

8λ2(χ − 1)(1+ χ)(ln(κ(0)(χ − 1)1/2)+ 0.12) (23)
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where the factor ln(κ(0)(χ − 1)1/2) + 0.12 has been added, in the light of equation (22)
which has been found using a more rigorous calculation. This factor keepsHM1(χ, T ) finite
asχ approaches one.

7. The structure of the flux line lattice

7.1. The Ginzburg–Landau parameter

This oscillatory solution and the exponential solution for the magnetic field in low fields
suggest that a general expression for the effective penetration depth (λ(χ)) is λ|(1−χ)|1/2.
Similarly, from section 4.1, the effective coherence length (ξ(χ)) is independent ofχ . This
suggests that the Ginzburg–Landau parameterκ(χ) for a paramagnetic superconductor is
given by

κ2(χ) = λ2(χ)

ξ2(χ)
= |(1− χ)|κ2(0). (24)

κ(χ) is always greater than zero. In the high-κ(0) limit, for very low and very high
χ -values,κ(χ) is high, and asχ tends to one,κ(χ) tends to zero.

The expression for the Landau free energy in high fields (equation (16)) suggests that
the triangular structure of the flux line lattice is always preferred over the square structure.
The minimum value for the free energy always occurs for the triangular lattice for which
βA = 1.16 [9] rather than the square lattice (βA = 1.18) [5]. However, except at fields
very close to the upper critical field, the non-linear terms in the Ginzburg–Landau equations
must be included and equation (16) is no longer valid. General arguments are provided
below to determine the structure of the flux line lattice. These consider the nature of the
fluxon–fluxon interactions, through the Ginzburg–Landau parameterκ(χ), and symmetry
constraints.

Figure 1. Contour diagrams for|ψ |2 for the triangular lattice of Kleineret al [9] and the square
lattice of Abrikosov [5].
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7.2. Highκ(χ), high magnetic fields

It is very well known that in non-magnetic superconductors whenκ(0) > 1, theoretical
calculations [9, 10] and experimental decoration measurements [11] show that the triangular
lattice is stable. The preference for the triangular structure, and in particular the relative
stability of the triangular lattice compared to the square lattice, can be explained as follows
[8]: in the triangular lattice there are six nearest neighbours, and the nearest-neighbour
distance is 1.075(φ0/B)

1/2. For the square lattice there are only four nearest neighbours,
and the nearest-neighbour distance is (φ0/B)

1/2. So for a given flux density, the nearest-
neighbour distance for a triangular lattice is greater than that of the square lattice. The
dominant interaction between fluxons in non-magnetic superconductors is repulsive, due to
the current flow around each fluxon. Hence it is reasonable that the structure with the largest
nearest-neighbour separation, namely the triangular lattice, is favoured. Only the stability
of the triangular and square lattice need be considered since they are the only structures
which tessellate and have the required symmetry such that the location of each fluxon is
equivalent. These two structures, which have been described by Abrikosov [5] and Kleiner
et al [9], are shown in figure 1.

For paramagnetic superconductors, there are two contributions to the forces between the
fluxons. There is the repulsive force from the supercurrents that flow around each fluxon.
There is also an attractive force of the form−mions ·B which results from the magnetized
magnetic ions being attracted into the higher-field region of neighbouring fluxons.

In the diamagnetic superconducting phase, whenκ(χ) > 1 which implies the condition
χ < 1+1/κ2(0), the net fluxon–fluxon force is repulsive and a triangular lattice is expected.
In the ferromagnetic superconducting phase whenκ(χ) > 1, χ > 1+ 1/κ2(0), and fluxons
penetrate the bulk of the superconductor. The attractive force between fluxons is larger
than the repulsive force and can be explained by considering the general expression for the
free energy (equation (2)). Forχ > 1, if the fluxon–fluxon spacing decreases, the term
(1−χ)B2/2µ0(1+χ) decreases, lowering the free energy and implying an attractive force.
The general discussion on the structure of the flux line lattice implies that this attractive
force between the fluxons will lead to a square flux line lattice.

7.3. Highκ(χ), low magnetic fields

It can be seen from equation (22) that in low fields paramagnetic superconductors are in the
Meissner state forχ < 1− 1/κ2(0). For higher values,χ > 1+ 1/κ2(0), andH < HM1,
we have found an antiferromagnetic flux line lattice. In this part of the phase diagram, the
dominant force between the fluxons is that between the magnetized paramagnetic ions. Since
the field senses in nearest-neighbour fluxons are opposite, the polarities of the magnetized
paramagnetic ions are opposite and the force between fluxons is repulsive. This repulsive
force will lead to a triangular lattice.

7.4. Intermediateκ(χ)-values

For the intermediateκ-values, 1/
√

2 < κ < 1, the coherence length is longer than
the penetration depth. Kramer [12] found general non-linear solutions to the Ginzburg–
Landau equations which account for the core of the fluxons accurately. In non-magnetic
superconductors, over the intermediate range ofκ(0), whenµ0H > 0.3HC , these solutions
demonstrate that the force between the fluxons is attractive and the square lattice is stable.
The attractive interaction is due to the overlapping cores, and the lower energy of the
square lattice compared with the triangular lattice is consistent with the general explanation
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provided above. Decoration measurements on Pb–Tl rods [13] show a rectangular lattice,
which is consistent with this result.

Using equation (24), the condition for the square lattice to occur, 1/
√

2< κ(χ) < 1, is
equivalent to 1− 1/κ2(0) < χ < 1− 1/2κ2(0) and 1+ 1/2κ2(0) < χ < 1+ 1/κ2(0).

7.5. The low-κ(χ) state

In metallic superconductors, when the Ginzburg–Landau parameter is less than 1/
√

2, the
material is type I. Throughout the superconducting phase, the material is in the Meissner
state. Using equation (24), the conditionκ < 1/

√
2 implies that 1− 1/2κ2(0) < χ <

1+ 1/2κ2(0).
At low κ(χ)-values, non-linear numerical solutions of the Ginzburg–Landau equations

are required to determine accurately the temperature dependence ofµ0HC1(χ, T ) and
µ0HM1(χ, T ), and the structure of the flux line lattice in these regions. Equation (16)
suggests that neither the diamagnetic lattice nor the ferromagnetic lattice is stable in the
low-κ(χ) state. Forχ < 1, equation (20) suggests that the Meissner state is the lowest
energy state and dM/dH is−1. Forχ > 1, equation (20) suggests that the antiferromagnetic
state is found. In this antiferromagnetic state, the cores of the fluxons overlap and in the
high-κ(0) limit, the structure of the flux line lattice is square.

Figure 2. dM/dH just belowHC2(χ, T ) as a function of the susceptibility, showing the different
magnetic phases that occur.

8. Discussion of the results

In figures 2 and 3, graphical representations of the mathematical results found are presented.
We have considered a model paramagnetic superconductor where the critical temperature
TC = 10 K, andµ0HC2(χ = 0, T ) = 2.5(1− T/TC) whereµ0HC2(χ = 0, T ) is in tesla.
It is assumed that:κ(0) = 2.5 and is independent of temperature; andµ0HC1(χ = 0, T )
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Figure 3. An idealized magnetic phase diagram for a paramagnetic superconductor showing
the magnetic phases present in high magnetic fields. The upper critical field isµ0HC2(χ, T ),
the lower critical field isµ0HC1(χ, T ), and the field at which the magnetic response changes
from ferromagnetic to antiferromagnetic isµ0HM1(χ, T ). In zero field, belowµ0HC1(χ, T ),
the superconductor is in the Meissner state; belowµ0HM1(χ, T ), the magnetic response is
antiferromagnetic. In the low-κ(χ) state,κ(χ) 6 1/

√
2.

has the same temperature dependence asµ0HC2(χ = 0, T ). It is also assumed that the
susceptibility of the paramagnetic ions in the normal state is described by a simple Curie
law of the formχ = 5/T . These values have been chosen for ease of calculation and
because they enhance the different regions of the phase diagram that can be found. They
also facilitate comparison between the calculations and the experimental data considered in
the next section.

In figure 2, the gradient of the magnetization with respect to the applied field (dM/dH )
as a function ofχ for the model paramagnetic superconductor is presented. dM/dH is
given by equation (14) which is valid close to the upper critical field. For low values ofχ ,
there is a diamagnetic triangular flux line lattice and dM/dH monotonically increases. For
1−1/κ2(0) < χ < 1−1/2κ2(0), the cores of the fluxons overlap and the diamagnetic lattice
has a square structure. In the range 1− 1/2κ2(0) < χ < 1+ 1/2κ2(0), the low-κ(χ) state
is the lowest energy state; forχ < 1, analogously to the case for type I superconductors,
the Meissner state is found and dM/dH is −1; for χ > 1, equation (20) suggests that
the antiferromagnetic state is found. In general the value of dM/dH will depend on the
orientation of the field with respect to the antiferromagnetic fluxons. The simplest case
is taken—it is assumed that the fluxon spacing is independent of the applied field so that
dB/dH = 0 and dM/dH = −1. There are discontinuities in dM/dH at χ = 1±1/2κ2(0).
For largeχ , the gradient increases again, approaching the value of the susceptibility in the
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normal state. The structure of the flux line lattice is square and the contribution to the
magnetization from the superconductivity is ferromagnetic.

In figure 3, the phase diagram for this model paramagnetic superconductor is described.
The upper critical field,µ0HC2(χ, T ), the lower critical field,µ0HC1(χ, T ), and the field
for the ferromagnetic/antiferromagnetic phase transitionµ0HM1(χ, T ) have been plotted
using equations (9), (22) and (23). For high fields, the structure of the flux line lattice and
the nature of the contribution to the magnetization from the superconductivity are stated
on the figure. In low fields, whenκ(χ) tends to zero, complete solutions of the non-linear
Ginzburg–Landau equations which fully account for the core of the fluxons will be required
to accurately determine the temperature dependence ofµ0HC1(χ, T ) and µ0HM1(χ, T ).
Below µ0HC1(χ, T ), the material is in the Meissner state. Belowµ0HM1(χ, T ), the
lattice is antiferromagnetic—triangular structure forχ > 1 + 1/κ2(0), square structure
for 1< χ < 1+ 1/κ2(0).

Figures 2 and 3 show that in high fields, the contribution to the magnetic response
from the superconductivity changes from diamagnetic to ferromagnetic. Hence, if the
absence of a diamagnetic superconducting response is taken as evidence for the destruction
of superconductivity, then an artifact of this interpretation would be that the upper critical
field drops to zero atχ = 1. Equally, one can only expect zero resistance in zero field in the
Meissner state. Whenχ > 1, flux penetrates the bulk of the superconductor, and in high-
quality single crystals with low pinning, one can expect a (non-zero) flux flow resistivity
[14]. This work suggests that non-zero resistance forχ > 1 cannot be taken as evidence
for the destruction of superconductivity. Hence we conclude that the magnetic and resistive
response of paramagnetic superconductors whenχ > 1 can easily be misinterpreted.

Finally we discuss how the results for the model paramagnetic superconductor may be
affected by the inhomogeneities and defects which inevitably occur to some degree in real
materials. From figure 2 and equation (14), it is clear that ifκ(0) is very large, there is
only a narrow range ofχ over which the low-κ(χ) state will be found. Furthermore if the
material is not homogeneous, there will be a distribution inχ . dM/dH may never become
negative. Rather, asχ increases, dM/dH may increase to a peak value at aboutχ = 1,
then decrease, and finally increase again asχ reaches its highest values.

It is well known that in non-magnetic superconductors, it is difficult to measure
accurately the properties of the Meissner state. In magnetic measurements, the defects in the
material act as flux-pinning sites. Therefore, after the field has been cycled to high values,
on returning to zero field there is inevitably flux trapped in the bulk of the superconductor.
Hence the magnetic properties are dependent on the history of the magnetic field [15].
One can expect similar history-dependent magnetic properties at highχ -values. If the field
has been cycled, on returning to zero field, ferromagnetic domains will be trapped in the
bulk of the material and the average magnetic response will be ferromagnetic rather than
antiferromagnetic.

9. Comparison with the literature

9.1. Theory

Much theoretical work has been completed on magnetic superconductors. The early work by
Matthiaset al [16] showed competition between magnetism and superconductivity when the
superconducting electrons overlap with the localized magnetic moments. Tachikiet al [17,
18] have considered the paramagnetic superconductors discussed in this work. It has been
shown [19] that Tachiki’s results can be described by scalingλ into λ/(1+ χ)1/2. There is



Paramagnetic superconductors 2253

none of the complexity that we have found atχ = 1. Rather, the superconductor becomes
a type I material asχ becomes very large (χ > 2κ2(0)). In particular, ferromagnetism and
antiferromagnetism at the lowest temperatures (the highestχ -values) are explained in an
entirely ad hocway—for example, by invoking an additional d–f exchange [20]. This is
in contrast to this work where the ferromagnetic and antiferromagnetic ordering necessarily
occur. The reason for the difference between Tachiki’s work and this work originates in
the assumption that there is zero heat transfer from the paramagnetic ions as the external
field changes in a paramagnetic superconductor.

Below, magnetic, resistive and neutron scattering experimental data found in the
literature are considered. Data are presented for the material ErRh4B4 because of the
extensive range of complementary data available. In addition, band-structure calculations
show that the conduction electrons are almost completely 4d (Rh) in character with almost
no overlap between these electrons and the 4f (Er) electrons in this material [21]. Other
paramagnetic superconductors which show similar properties are cited.

9.2. D.C. magnetic properties

In figures 4 and 5, magnetic properties of ErRh4B4 are shown as functions of field and
temperature for the field applied along thea-axis of a single crystal, as given by Behroozi
et al [22]. The data have been replotted in S.I. units which, on noting the Meissner slope
(dM/dH = −1) in the figures, emphasizes the rapid changes in the properties when the
normal-state susceptibility is approximately+1.

The gradient in the slope of the magnetization (dM/dH ) at µ0HC2(T ) for ErRh4B4

steadily increases as the temperature drops. Thereafter it reaches a very large peak value
at 3 K, and then falls rapidly back to a value equal to the normal-state susceptibility. We
explain these results as discussed above using figure 2 and assuming that there is distribution
in the values ofχ throughout the material. Microscopically this means that whenχ ≈ 1,
in high fields, parts of the material are in the diamagnetic mixed state, and parts in the
Meissner state and the superconducting ferromagnetic and antiferromagnetic state. Below
0.7 K, Behrooziet al [22] describe the material as being in the normal ferromagnetic state.
In the context of this work, the ferromagnetic state is superconducting.

The upper critical field (µ0HC2(χ, T )) of ErRh4B4 increases from zero atTC to a
maximum value (at about 5.5 K) and thereafter decreases. A similar peak effect has
been observed for other rhodium borides, TmRh4B4 and HoRh4B4, as well as DyMo6S8,
HoMo6S8 and ErMo6S8 [23]. These results are consistent withχ increasing as the
temperature decreases and equation (9), as shown in figure 3.

9.3. Resistance measurements

In figure 6, resistance measurements made by Mapleet al (see [23, 24]) in a nominally
zero D.C. magnetic field for ErRh4B4 are shown. The resistance drops to zero between
about 8.5 K and 1 K. Below 1 K, the resistance increases but not to the value found above
8.5 K. This low, non-zero resistance found at the lowest temperatures is consistent with flux
penetration and resistive flux flow. Measurements on HoMo6S8 show a similar reduction in
resistance at the lowest temperatures to about 70% of the normal-state resistance aboveTC .
Furthermore, in this material, measurements have shown that the resistance is dependent
on the history of the magnetic field. In the ferromagnetic state, at 25 mK, if the field is
applied in one direction and then reversed, the zero-resistance state is reinstated [23, 25].
This history-dependent resistance can be interpreted as evidence for flux pinning and hence
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Figure 4. Virgin magnetization curves versus the applied field along thea-axis of a single
crystal of ErRh4B4 for T > 3 K taken from reference [22].

is consistent with the origin of the ferromagnetism being superconductivity.
It is noted that if the resistance is zero over a discrete range of temperature or field

in a B–T phase diagram, it is often taken as evidence for re-entrant superconductivity or
field-induced superconductivity [26]. This work suggests that non-zero resistance in zero
field does not imply the destruction of superconductivity. In paramagnetic superconductors,
below TC , in the ferromagnetic and antiferromagnetic state, the material remains a bulk
superconductor.

9.4. Neutron measurements

Small-angle neutron measurements on ErRh4B4 have confirmed the ferromagnetic state at
the lowest temperatures [27, 28]. Measurements on Chevrel-phase superconductors provide
evidence for the coexistence of magnetic order and superconductivity [29, 30]. Recently
Yaron et al have completed very detailed small-angle neutron scattering investigations
on the material ErNi2B2C [3]. These results demonstrate that there is the microscopic
coexistence of magnetism and superconductivity. Significantly, they find that the lattice
is a square lattice over the whole range of the experiment: 0.2 T < µ0H < 1.2 T;
1.6 K < T < 8.0 K. Yaron et al note that the origin of the square lattice is an open
question, but speculate that magneto-elastic coupling is one of very few explanations to date
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Figure 5. Virgin magnetization curves versus the applied field along thea-axis of a single
crystal of ErRh4B4 for T 6 3 K taken from reference [22].

[31]. A complete understanding of Yaron’s results will require analysis of the anisotropic
properties of ErNi2B2C. Nevertheless, in the context of this work, the simple explanation
for the square lattice is that the susceptibility is greater than 1− 1/κ2(0).

10. Magnetic materials

The special class of paramagnetic superconductors considered in this work is a subset of
magnetic superconductors. However, one can expect the range of properties described in
this work, notably atχ ≈ 1, to occur in many superconducting systems which incorporate
strongly paramagnetic ions. Typical values of the susceptibility for materials containing
rare-earth ions can be calculated using the Langevin function. Taking a typical unit-cell
size for magnetic superconductors of say∼5 Å, at a temperature of 1 K we findχ ≈ 0.06p2

eff
wherepeff is the effective Bohr magneton number. The rare-earth elements havepeff-values
up to∼10µB which givesχ ≈ 6, so values ofχ ≈ 1 are to be expected.
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Figure 6. The A.C. electrical resistance versus temperature for ErRh4B4 taken from reference
[23].

A range of magnetic materials provide some further support for the implicit
generalization of this work, namely that paramagnetic superconductors with high
susceptibility will tend to produce a ferromagnetic or antiferromagnetic resistive
superconducting state. The rhodium–boride superconductors with strongly paramagnetic
ions, DyRh4B4, TbRh4B4 and GdRh4B4, show a distinct drop in resistance to a non-
zero value and ferromagnetic ordering at low temperatures [23, 32]. In the nickel boride
carbides, the materials with strongly paramagnetic ions, DyNi2B2C and TbNi2B2C, show a
distinct drop in resistance to a non-zero value, whereas those nickel borides with weakly
paramagnetic ions containing Y, Lu and Tm show a drop in resistance to a zero value
[33]. In the Heusler-type compounds (RE)Pd2Sn [23, 34], zero resistance is observed
in those materials containing weakly paramagnetic ions Y, Tm, Yb, and Lu, whereas
antiferromagnetic ordering is found at the lowest temperatures when the ion is strongly
paramagnetic—Gd, Tb, Dy, and Ho.

In this work, it has been assumed that the magnetic ions are simply paramagnetic and
isotropic. The Ginzburg–Landau equations considered in this work will need to be developed
further to explain the two-dimensional and layered high-temperature superconductors. As
a more complete picture of the properties of the vast range of magnetic superconductors is
developed (including those quoted in this section), one can be sure that in addition to the
electromagnetic interaction considered in this work, other interactions must be added for a
complete description of these materials.
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11. Final comments

A new expression for the Landau free energy of paramagnetic superconductors is presented
in this paper. It is based on the assumption that in the superconducting state, if the
applied magnetic field is changed, there is no net heat generated or absorbed by the
paramagnetic ions after equilibrium has been reached. This provides a framework which can
describe much of the data on these materials. In particular it is expected that paramagnetic
superconductors with strongly paramagnetic ions will often produce a square flux line lattice
structure.
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